55 research outputs found

    High photo-excited carrier multiplication by charged InAs dots in AlAs/GaAs/AlAs resonant tunneling diode

    Full text link
    We present an approach for the highly sensitive photon detection based on the quantum dots (QDs) operating at temperature of 77K. The detection structure is based on an AlAs/GaAs/AlAs double barrier resonant tunneling diode combined with a layer of self-assembled InAs QDs (QD-RTD). A photon rate of 115 photons per second had induced 10nA photocurrent in this structure, corresponding to the photo-excited carrier multiplication factor of 10^7. This high multiplication factor is achieved by the quantum dot induced memory effect and the resonant tunneling tuning effect of QD-RTD structure.Comment: 10 pages,5 figures. Submitted to Applied Physics Letter

    DDRF: Denoising Diffusion Model for Remote Sensing Image Fusion

    Full text link
    Denosing diffusion model, as a generative model, has received a lot of attention in the field of image generation recently, thanks to its powerful generation capability. However, diffusion models have not yet received sufficient research in the field of image fusion. In this article, we introduce diffusion model to the image fusion field, treating the image fusion task as image-to-image translation and designing two different conditional injection modulation modules (i.e., style transfer modulation and wavelet modulation) to inject coarse-grained style information and fine-grained high-frequency and low-frequency information into the diffusion UNet, thereby generating fused images. In addition, we also discussed the residual learning and the selection of training objectives of the diffusion model in the image fusion task. Extensive experimental results based on quantitative and qualitative assessments compared with benchmarks demonstrates state-of-the-art results and good generalization performance in image fusion tasks. Finally, it is hoped that our method can inspire other works and gain insight into this field to better apply the diffusion model to image fusion tasks. Code shall be released for better reproducibility

    Comparison of high performance liquid chromatography and spectrophotometry in the determination of chitosan content in water-soluble fertilizers

    Get PDF
    Different analytical methods for the determination of chitosan content in water-soluble fertilizers by HPLC and spectrophotometry were established, and the hydrolysis conditions of chitosan were systematically studied. The results showed that the hydrolysis effect of 1+1 hydrochloric acid solution at 100℃ for 24h was the best. Linear range of HPLC with 1-phenyl-3-methyl-5-pyrazolone (PMP) as derivatizing agent. The detection limit and spiked recovery are 1~200 mg/l, 0.07 mg/l and 95~101% respectively, and the corresponding indicators of spectrophotometry are respectively 0~100μg, 0.47μg and 94%. Through comparison, the two methods have good consistency in the determination results of water-soluble fertilizer samples, and can meet the analysis requirements of chitosan content in water-soluble fertilizer. Among them, HPLC has fewer interference factors and higher efficiency. In addition, methyl fluorene chloroformate (Fmoc-Cl) was also used as a derivant to derive the hydrolysate of chitosan, and then detected by high performance liquid chromatography. It was found that the measured results were basically consistent with the above two methods, but the high performance liquid chromatography and spectrophotometry established in this study were not suitable for the determination of chitosan content in water-soluble fertilizer containing nitrate

    Research Progress on the Relevance between Intestinal Flora and Colorectal Cancer

    Get PDF
    Cancer is a common chronic disease all over the world, which will cause serious health burden. At present, the debate about the role of intestinal flora in the prevention and control of cancer has always existed. Therefore, researchers should pay close attention to the impact of intestinal flora on several cancers (such as colon cancer, liver cancer and breast cancer). In addition, it is reported that intestinal flora may also affect the efficacy of cancer chemotherapy and immunotherapy. This paper introduces some energy research results to help clear the relationship between intestinal flora and cancer, even cancer micro environment. It can help clarify the mist of cancer and gut microbiota, let those little creatures to serve the progress of improving mankind living condition and of health and medicine

    Green synthesis of biogenetic Te(0) nanoparticles by high tellurite tolerance fungus Mortierella sp. AB1 with antibacterial activity

    Get PDF
    Tellurite [Te(IV)] is a high-toxicity metalloid. In this study, a fungus with high Te(IV) resistance was isolated. Strain AB1 could efficiently reduce highly toxic Te(IV) to less toxic Te(0). The reduced products formed rod-shaped biogenetic Te(0) nanoparticles (Bio-TeNPs) intracellularly. Further TEM-element mapping, FTIR, and XPS analysis showed that the extracted Bio-TeNPs ranged from 100 to 500 nm and consisted of Te(0), proteins, lipids, aromatic compounds, and carbohydrates. Moreover, Bio-TeNPs exhibited excellent antibacterial ability against Shigella dysenteriae, Escherichia coli, Enterobacter sakazakii, and Salmonella typhimurium according to inhibition zone tests. Further growth and live/dead staining experiments showed that E. coli and S. typhimurium were significantly inhibited by Bio-TeNPs, and cells were broken or shriveled after treatment with Bio-TeNPs based on SEM observation. Additionally, the antioxidant and cytotoxicity tests showed that the Bio-TeNPs exhibited excellent antioxidant capacity with no cytotoxicity. All these results suggested that strain AB1 showed great potential in bioremediation and Bio-TeNPs were excellent antibacterial nanomaterials with no cytotoxicity.Peer reviewe

    Mechanical damage characteristics and nondestructive testing techniques of fruits: a review

    Get PDF
    Abstract Fruits will be subjected inevitably to various external forces in the process of harvesting, transportation, processing, and storage, which will cause mechanical damage. The research on mechanical properties and damage mechanisms of fruit can effectively control its loss. In this study, fruits are divided into different types according to their morphology and structure. The impact, vibration, static pressure, and other mechanical damage on fruits are studied. It is important to identify the damaged parts of fruit after damage quickly and accurately. Therefore, this study analyzes the application of nondestructive testing technologies such as spectral detection technology, NMR (nuclear magnetic resonance) detection technology, and acoustic and electrical characteristics detection technology in fruit damage detection

    Effects of sodium butyrate on growth performance, antioxidant status, inflammatory response and resistance to hypoxic stress in juvenile largemouth bass (Micropterus salmoides)

    Get PDF
    The aim of this study was to investigate the effects of sodium butyrate (SB) supplementation on growth performance, antioxidant enzyme activities, inflammatory factors, and hypoxic stress in largemouth bass (Micropterus salmoides). Diets were supplemented with different doses of SB at 0 (SB0), 0.5 (SB1), 1.0 (SB2) and 2.0 (SB3) g/kg. The hypoxic stress experiment was performed after 56 days of culture. The results showed that compared with the SB0 group, the final body weight, weight gain rate and protein deposition rate of the SB3 group were significantly increased (P<0.05), while FCR was significantly decreased (P<0.05). The contents of dry matter, crude lipids, and ash in the SB2 group were significantly higher than those in the SB0 group (P<0.05). The urea level was significantly decreased (P<0.05), and the glucose content was significantly increased (P<0.05) in the SB supplement group. Compared with the SB0 group, the SB2 group had significant reductions in the levels of serum triglyceride, cholesterol, elevated-density lipoprotein cholesterol, and low-density lipoprotein (P<0.05), and significant reductions in the levels of liver alkaline phosphatase and malondialdehyde (P<0.05). The total antioxidant capacity of the SB1 group was higher than that of other groups (P<0.05). Compared with the SB0 group, the mRNA expression of TLR22, MyD88, TGF-β1, IL-1β and IL-8 in the SB2 group significantly decreased (P<0.05). The cumulative mortality rate was significantly decreased in the SB2 and SB3 groups in comparison with that in the SB0 group after three hours of hypoxic stress (P<0.05). In a 56-day feeding trial, SB enhanced largemouth bass growth by increasing antioxidant enzyme activity and inhibiting TLR22-MyD88 signaling, therefore increasing cumulative mortality from hypoxic stress in largemouth bass

    Electric-field-driven Non-volatile Multi-state Switching of Individual Skyrmions in a Multiferroic Heterostructure

    Full text link
    Electrical manipulation of skyrmions attracts considerable attention for its rich physics and promising applications. To date, such a manipulation is realized mainly via spin-polarized current based on spin-transfer torque or spin-orbital torque effect. However, this scheme is energy-consuming and may produce massive Joule heating. To reduce energy dissipation and risk of heightened temperatures of skyrmion-based devices, an effective solution is to use electric field instead of current as stimulus. Here, we realize an electric-field manipulation of skyrmions in a nanostructured ferromagnetic/ferroelectrical heterostructure at room temperature via an inverse magneto-mechanical effect. Intriguingly, such a manipulation is non-volatile and exhibits a multi-state feature. Numerical simulations indicate that the electric-field manipulation of skyrmions originates from strain-mediated modification of effective magnetic anisotropy and Dzyaloshinskii-Moriya interaction. Our results open a direction for constructing low-energy-dissipation, non-volatile, and multi-state skyrmion-based spintronic devices.Comment: Accepted by Nature Communications 11, 3577 (2020

    B-Cell Receptor-Associated Protein 31 Promotes Metastasis via AKT/β-Catenin/Snail Pathway in Hepatocellular Carcinoma

    Get PDF
    Hepatocellular carcinoma (HCC) is one of the most lethal cancer worldwide, characterized with high heterogeneity and inclination to metastasize. Emerging evidence suggests that BAP31 gets involved in cancer progression with different kinds. It still remains unknown whether and how BAP31 plays a role in HCC metastasis. Epithelial–mesenchymal transition (EMT) has been a common feature in tumor micro-environment, whose inducer TGF-β increased BAP31 expression in this research. Elevated expression of BAP31 was positively correlated with tumor size, vascular invasion and poor prognosis in human HCC. Ectopic expression of BAP31 promoted cell migration and invasion while BAP31 knockdown markedly attenuated metastatic potential in HCC cells and mice orthotopic xenografts. BAP31 induced EMT process, and enhanced the expression level of EMT-related factor Snail and decreased contents and membrane distribution of E-cadherin. BAP31 also activated AKT/β-catenin pathway, which mediated its promotional effects on HCC metastasis. AKT inhibitor further counteracted the activated AKT/β-catenin/Snail upon BAP31 over-expression. Moreover, silencing Snail in BAP31-overexpressed cells impaired enhanced migratory and invasive abilities of HCC cells. In HCC tissues, BAP31 expression was positively associated with Snail. In conclusion, BAP31 promotes HCC metastasis by activating AKT/β-catenin/Snail pathway. Thus, our study implicates BAP31 as potential prognostic biomarker, and provides valuable information for HCC prognosis and treatment
    corecore